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JXlTER TO THE EDITOR 

Nucleation of a vapour bubble or liquid drop by the 
self-trapping of a quantum particle in a fluid 

John P Hernandez and L W Martin 
Department of Physics and Astmnomy, University of North Carolina, Chapel Hill, NC 
27599-3255, USA 

Rseived 28 October 1991 

&tmL The conditions which allow the self-trapping of a quantum particle to nucleate 
a i-l heterophase region in the host fluid are explored theoretically. A previously 
neglected aspect is emphasized the curvature of the surface separating the wexisting 
liquid and vapour leads to a surface prwure difference a c m  that surface which has 
contributions from the surface tension and the quantum particle. Results of calculations 
for an electron in liquid neon, for Wnditions in which a stable vapour bubble is nuclealed, 
are used to give an example of the phenomena explored. 

A quantum particle interacting via short-range forces with the atoms of a fluid may 
self-trap through a local distortion of the fluid structure. This general phenomenon 
is now well known, both theoretically and in its experimental consequences [l]. For 
example, under appropriate conditions, excess electrons self-trap in ‘bubbles’ in hel- 
ium and neon [2] fluid hosts. In helium, the bubbles may be trapped by vortices [3], 
their mobility phonon limited [4], their acceleration measured [5],  and their optical 
absorption determined 161. However, the conditions in which such self-trapping leads 
to a heterophase region in the fluid have not been investigated theoretically in detail. 
The problem, which has been ignored until now, is the pressure difference which is 
necessary to maintain equilibrium of a curved surface separating coexisting phases, 
in the presence of the quantum particle. A simplied treatment of this problem 
is discussed in this letter. First we give the context of the present approach and 
derive the conditions required for the self-trapping under consideration. Then as an 
example, results appropriate to an excess electron in liquid neon are obtain from an 
application of the formalism. 

The problem is discussed using the following variables for a thermodynamic fluid: 
temperature (T), density (p), pressure (P), chemical potential ( p )  and surface tension 
(7). For T < T, (where T, is the vapour-liquid critical temperature) an interfacial 
region may be formed, i.e. one in which the local fluid density takes on values 
between those of the homogeneous fluid at coexistence (pv < p < pL). Ignoring 
its detailed nature and approximating the density by a constant (pv or pL) with a 
jump at a ‘surface of coexistence’ is a procedure often used in connection with the 
‘equimolecular dividing surface’ [7]. This surface is defined as the one for which 
the piecewise constantdensity approximation conserves the total number of atoms 
in the system. In what follows, the above procedure will be used to describe the 
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interfacial region; the curvature dependence of the surface tension [8] wiIl be ignored 
for simplicity. 

In this approach to the self-trapping problem, consider a homogeneous fluid of 
density p and temperature T with a quantum particle in its lowest-energy delocalized 
state, as a reference system. In the reference system, the particle-fluid interaction 
is characterized by a uniform potential, V,, which is a function of the fluid density. 
A density-functional model is now sought to describe the most probable state of the 
(p, T) particle-fluid system, which is described hy a particle wavefunction, $(T ) ,  and 
an inhomogeneous fluid density, p ( r ) .  A p ( r )  which is slowly varying everywhere 
except in an interfacial region, if one exists, can be taken to imply local values 
for p,  P, and V, which correspond to a homogeneous fluid of that density at the 
temperature in question. 

The most probable state sought for the particle-fluid system can then be described 
by the SchrCidinger equation for the particle (of mass m and energy E): 

[-(fi2/2m)Az t (V(r )  - V,) - E ] @ ( r )  = 0 (1) 

and by the difference in the Helmholtz free energy between this system and the 
reference one: 

~ ~ = E + ~ I ~ ( ~ ) ( ~ ( ~ ) - I . ~ , ) - - ( P ( ~ ) - - P , ) I  d r + y / d A .  (2) 

The subscripted variables correspond to the reference system and the local ones to 
the system of interest. Assuming spherical symmetry, the last term in (2) is 4 x R a y ,  
where R is the radius of the ‘equi~nolecular dividing surface’ (il an interfacial region 
exists). The state sought must be the reference system (E, = 0 = AF) or another 
for which AF is a lower energy minimum (with E < 0).  

Extremization of AF[p(r) ,  R] is carried out in two steps. For all r, except in a 
possible interfacial region (where p v  < p ( r )  < p,), the requirement 6AF/6p(r) = 
0 implies 

where the last denominator is the particle normalization. The local relation between 
density, chemical potential and pressure guarantees that the first square bracket in 
(3) vanishes and any equation of state may be used. Thus, the requirement gives an 
implicit relation between p ( r )  and $(r) :  

( I L ( 4  - P P ) / ( W 4 / h J ( 4 )  = l+(~)12/(@l$). (4) 

Within the interfacial region (where p ( r )  = p ( p v )  = p ( p L ) ) ,  the choice of p ( r )  = 
pv or p,, with a jump at R, defines V(T) .  It may be noted that if V(r) a p ( r )  then 
equation (4) and the continuity of $(r)  imply that the interfacial region is indeed a 
surface and R is uniquely specified. 

The extremization of (2) with respect to R is to be accomplished at constant 
1.1 I P,  T ,  total number of atoms, and total volume 191. Thus it yields a pressure 
difference across the curved surface at R: 

- IP(R-1- P(R+)1 t lV(R-1- V(R+)lI$(R)lz/(+I$) t ~ Y / R  = 0 (5) 
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where the last term is the well known classical effect due to the surface tension and 
the middle term is a surface pressure difference due to  the quantum particle (V(R*) 
corresponds to densities pv,L, with R- being in the heterophase region). Equation 
(5) only causes a pressure change at R and thus does not affect (3). The fresenergy 
difference (2) may be separated into the sum of a term due to the surface pressure 
and energy- ’surface’ term-and the rest-a  ‘bulk’ term: 

AFls = (4r/3)R3{[v(Rt) - ~ ~ R ~ ~ 1 1 + ~ ~ ~ 1 2 / ~ + l + ~  + Y/R) 

A% = E + [ P ( T ) ( I L ( ~ )  - ~ p )  - ( P ( r )  - pp)I dr. 

(6) 

(7) J 
Note that (7) explicitly excludes the surface pressure, which is in (6) with the surface 
tension part of it having cancelled two-thirds of the last term in (2). Furthermore, 
as T + T, from below, both terms in (6) tend to zero: as pv and pL tend to the 
common value (p, )  the potential difference vanishes and also y -* 0. 

The problem of defining R operationally still remains to be resolved. Its definition 
as the radius of the ‘equimolecular dividing surface’ is not useful as p ( r )  is unknown 
in the interfacial region. A method for bracketing R, and all functions depending on 
it, uses (4) as follows. As the relation between p( r )  and +( r )  outside the interfacial 
region is given by (4), extreme brackets for R may be obtained by choosing its values 
to be at either extreme of the interfacial region (pV or rL, corresponding to the 
fluid just reaching the coexistence densities). The usefulness of this bracketing may 
be investigated numerically. The problem consists in the jump of 6 V / 6 p  at the 
phase change; the required variation in $(r)  from vV lo rL (see (4)) may depend so 
strongly on the choice of R that substantial uncertainties result. 

To clarify and quantify the preceding discussion, results will now be given for 
an excess electron in liquid neon, as the particle-fluid interaction is repulsive in this 
case. V ( r )  is obtained from electronatom interactions, which are assumed to be 
non-overlapping, and cast as an s-wave pseudopotential, as in our previous work 
which focussed on experiments at T > T, [lo]: 

V ( r )  = -(hZ/2m)4?r[(tan 6,(k))/k]p(r) (8)  

where the s-wave scattering phase sh8ts 6,(k) are taken from O’Malley and Cromp- 
ton [ll] and correspond to a scattering energy of h2k2/2m. This energy, in turn, is 
related to p(v)  through the Wigner-Seitz model, in which the appropriate boundary 
condition in a fluid yields 

tan[kr, + 6,(k)] = kr, (9) 

with p( r ) - I  = 47r</3. This approximation is in the same spirit as that of a local 
pressure and chemical potential for a slowly varying p( r). Fluid neon is described 
with the van der m a l s  equation of state, parametrized to the experimental critical 
point: T, = 44.38 K and pc = 1.443 x1OZ2 The self-consistent calculation 
using (1) and (4) can now be carried out numerically. y is only required to obtain 
the surface free energy in (6). 

We shall use an empirical fit to a scaled surface tension [12]: 

-y/kBTcp,”13 = 2(1 -TIT,). 
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Table 1. Coe*stence densities, at selected t e m p a l u m ,  of fluid neon [IS] and, in 
parenlhses, l h m  of the van der Waals model. Densities scaled to ps; temperatures (0 

T.. 

T’ 1 0.95 0.90 0.85 0.80 

& 1 0.41 037 0.18 0.12 - .  
(1) (0579) (0.426) (0320) (0.240) 

o? 1 1.65 185 2.00 213 
- I  

(1) (1.462) (1.6.57) (1.807) (1.933) 

The constant has been deliberately chosen to be fairly small to account for the 
reduction of y from that appropriate to a flat surface to that for a curved surface [SI. 
Other estimates may be used [13]. 

Full discussion of our calculations for T above and below T, will be given else- 
where [14]. Here, we report examples, for the temperature range 0.95 > T/T, > 
0.80, in which electron self-trapping nucleates a vapour bubble in the van der Waals 
model liquid which approximates neon. The stability trends in this regime are the 
same for calculations above the critical point at comparable densities: the stability 
of self-trapping increases as the temperature is lowered at constant density or as the 
density is lowered at constant temperature. As shown below, this increase of stability 
is achieved on approaching the coexistence line; the bubble radius grows under these 
conditions. These stability trends are mainly due to the ‘bulk’ contributions to the 
free energy (7). The ‘surface’ contributions (6) are substantial and tend to destabilize 
self-trapping (since they are non-negative), but show a less pronounced density and 
temperature dependence than the bulk contributions. In the cases for which stable 
self-trapping is obtained, the widths of the interfacial regions are of the order of 10% 
of R and the bracketing of R gives uncertainties in the values of R and the total 
free energy of less than 20%. 

1.0 7 

0.0 - ’ ’ 1 
0 2 rpc’” 4 6 

F Q U ~  1. p(r)/p, against rp:I3 for a reference 
fluid with p = 2p,  and T = 0.8T,. Bracketing 
cases for R are shown-innermost and outer- 
mast edges of the interfacial regimc; the vertical 
arrows m a 3  tliepedges of the interfacial regions 
(w and n) for both bracketing cam. 

A typical example of the results obtained for p ( r ) ,  for the bracketing choices of 
R, is given by the two curves in figure 1. These results correspond to a reference fluid 
of density of Zp, at a temperature of 0.8Tc. Note that these conditions correspond 
to a single-phase fluid in the van der Waals model, but not to real neon; see table 
1 for the coexistence data [15]. The example has been chosen as one in which the 
reference fluid is relatively close to the liquid at coexistence in the van der Waals 
model. 
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Tpbk 2. Results for the most probable self-trapped slate of an acess dectmn in a 
van der %Is model for neon, with bracketing choices for R The reference fluid is 
characterized by p' = p i p c  and T' = TIT,. Radii are in units of p;'13 (Le. 4.11 
a). The density a1 the localization cenm is scaled to the saturated vapour density. A N  
is the number of atoms expclled by the tmppcd clccfron. The particle binding energy 
-E ,AFlb  (from (7)h and tolal A F  (from (2)) arc in units of fsT.  The penultimate 
mlumn gives the ratio of the fiat to the wmnd Lcrm in (6). i.e. the quantum particle 
pressure contribution to the contribution from the surface tension. 

p' T' R ry r~ p(O)/pv A N  - E  -AFlb Ratio - A F  

1.70 0.95 291 291 3.05 0.21 155 48 29.9 3.29 13.9 
3.12 297 3.12 0.23 165 50 

1.80 

1.90 

1.80 

1.90 

1.90 

200 

200 

210 

0.95 

0.95 

0.90 

opo 

0.85 

0.85 

0.80 

0.80 

249 
268 
216 
234 
290 
3.22 
238 
267 
289 
3.30 
2.27 
2.61 
284 
332 
2.13 
252 

2.49 
255 
2.16 
2.20 
2.90 
3.02 
238 
2.46 
2.89 
3.06 
2.27 
2.37 
2.84 
3.04 
2.13 
2.24 

2.63 
2.68 
230 
2 3 4  
3.08 
3.22 
2.57 
2.67 
3.11 
3.30 
2.49 
2.61 
3.08 
3.32 
238 
252 

0.17 
0.18 
0.14 
0.15 
0.22 
0.27 
0.17 
0.20 
0.23 
0.31 
0.16 
0.21 
0.24 
033 
0.13 
021 

112 
118 
84 
87 

167 
186 
106 
116 
177 
208 
98 

111 
181 
121 
88 

101 

46 
49 
43 
46 59 

64 
53 
60 
71 
79 
60 
71 
84 
95 
66 
82 

29.9 256 14.6 
243 5.03 7.8 

18.4 730 13 
18.6 5.75 2.2 
40.8 1.99 17.4 
41.2 1.40 18.0 
30.8 3.86 5.2 
31.1 2.73 6.4 
53.2 1.72 19.6 
53.8 1.10 20.0 
36.8 3.47 2.8 
37.6 2.24 4.9 
65.4 1.19 28.5 
66.6 0.72 27.2 
41.0 274 5.3 
42.8 1.67 7.2 

245 4.01 8.7 

Dble 2 shows self-consistent results calculated for various reference conditions 
at which stable self-trapping is obtained. At higher densities than those shown, on 
isotherms, self-trapping becomes metastable, then unstable due to the increasing stiff- 
ness of the fluid. The features previously discussed are illustrated and it is noteworthy 
that AF/kc,TI, (equation (6)) is dominated by the contribution from the quantum 
particle, when compared to that of the surface tension, unless the coexistence curve 
is closely approached. 

In conclusion, a model has been presented for calculating conditions in which a 
heterophase region may be stably nucleated by the self-trapping of a quantum particle 
in a fluid. The freeenergy minimization must take into account the curvature of the 
interfacial surface and the resulting surface pressure contributions In the example 
given, these contributions appear to be dominated by those due to the quantum 
particle, rather than by those due to the surface tension, unless the coexistence 
curve is closely approached. The model presented is certainly susceptible to detailed 
improvement but we believe it gives the core of the physical processes involved. 

It had been noted [6] that surface tension contributions, used to obtain a bubble 
radius (R) for electrons in liquid helium, required an altered pressure dependence 
in some cases for calculations to agree with experimental observations. It is now 
apparent that, in previous calculations where a heterophase region was nucleated, 
theoretical estimates usually did not have an appropriately minimized free energy. 
It may be worthwhile to re-examine such theoretical results [I] regarding the self- 
trapping of electrons and positronium in simple fluids. 
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